Educación Cristiana Alternativa

Educación es algo muy diferente de lo que usted piensa …

Aprender matemática: ¿Cuestión de burocracia o de principios? (Parte 1)

en 14-01-2012

Parece que la matemática tiene mala reputación. “Matemática es difícil.” – “Yo no entiendo la matemática.” – Cuando un alumno dificulta en sus tareas y busca ayuda, casi siempre es en matemáticas. Personalmente no encuentro esta dificultad, y en la enseñanza de mis propios hijos tampoco. La matemática no es difícil. Por lo menos no al nivel de la escuela primaria y secundaria. Pero después de observar a un buen número de alumnos sometidos al sistema escolar, de los más variados niveles, tengo que lanzar las siguientes conclusiones provocativas:

– Enseñar y aprender matemática es una cuestión de principios y de la fe.

– La matemática no es difícil; pero la manera burocrática como funciona el sistema escolar, la ha hecho difícil de comprender.

Intentaré explicar como llegué a estas conclusiones.

La matemática es una cuestión de principios

Deseo explicar este punto y ya tengo una dificultad. Mucha gente no sabe qué son “principios”. Supongo que es porque no los tienen. Un “principio” es una convicción tan profunda que no se deja mover por las circunstancias. Una persona con principios no se deja arrastrar por cualquier corriente. No se deja “comprometer” por sus amistades, ni acepta soborno. Un “principio” es un fundamento que sostiene la vida entera, así como el fundamento de un edificio sostiene el edificio entero.
Para dar un ejemplo: Una persona “honrada”, así de comúnmente honrada, es alguien que normalmente dice la verdad, que normalmente no engaña en sus negocios, etc. – pero puede haber excepciones. Puede haber situaciones donde esta persona “honrada” miente o engaña. Cuando se encuentra bajo mucha presión, por ejemplo. O cuando piensa que tiene que hacerlo “por una causa buena y justa”. – Hay muchas personas así de comúnmente honradas. Pero hay muy pocas personas honradas por principio. Una persona que vive según el principio de la honradez, siempre será honrada. Esta persona nunca va a mentir o engañar. Ni siquiera cuando es presionada. Y ni siquiera “para una causa buena y justa”. El principio de la honradez es un fundamento de su personalidad. Si esta persona mentiría o engañaría, perdería una parte de su personalidad.

Ahora, la matemática se fundamenta sobre principios. La matemática no cambia según las circunstancias, ni según el gobierno de turno. La matemática no acepta sobornos. La matemática ni siquiera tiene matices culturales: un matemático asiático y un matemático sudamericano, al tratar el mismo problema, necesariamente llegarán al mismo resultado (excepto si uno de ellos comete un error). Los principios de la matemática son universales y eternos.

Por tanto, para una persona sin principios será difícil comprender la matemática. Pero no porque la matemática fuera difícil. ¡La dificultad está en la persona, no en la matemática! La persona “comúnmente honrada” no comprende por qué no debería dejar de un lado su honradez por una sola vez, cuando se trata de defender la causa de su mejor amigo. Y de la misma manera, esta persona no va a comprender por qué no puede pasar por alto una de las leyes de las potencias, por una sola vez no más.

Pero los principios son el fundamento de la matemática. No son simplemente “adornos” o “trozos de conocimiento”. Son la base que sostiene el edificio entero de la matemática. Si se pasara por alto un solo principio, esto haría que la matemática ya no sería matemática. Entonces, para entender la matemática es necesario tener principios.

La matemática es una cuestión de fe

Voy todavía un paso más allá. Dije que los principios de la matemática son universales y eternos. O sea, los principios matemáticos son válidos para cada persona, en cada lugar del universo, y por todos los tiempos. A diferencia de las otras ciencias, en la matemática no puede haber distintas “corrientes” que se contradicen entre sí. En la física se disputa si la luz consiste en ondas, o en partículas, o en ambas. En la psicología se disputa si el hombre es condicionado mayormente por su herencia genética o por su medio ambiente. Cada ciencia tiene estas disputas entre distintas opiniones, y a menudo no hay manera de comprobar quien tiene la razón. Pero en la matemática no puede haber tales disputas. En la matemática se puede comprobar con toda seguridad cuál es la verdad y cuál es el error. Y una vez que una verdad matemática está comprobada, todos los matemáticos del mundo la aceptan y no puede haber disputa acerca de ella.

Aquí tocamos un asunto filosófico que no puedo tratar con la profundidad que merece: ¿Es la matemática un invento de la mente humana, o existe la matemática independientemente de nosotros? Si la matemática fuera inventada por nuestra mente, entonces podríamos manipularla y cambiarla a nuestro antojo. Cada uno podría inventar su propia matemática; o el gobierno podría decretar una “matemática oficial” y “políticamente correcta” para el país. Pero si fuera así, ¿cómo se explica el hecho de que todos los matemáticos del mundo aceptan las mismas verdades matemáticas y rechazan los mismos errores? ¿Y cómo se explica el hecho de que la matemática corresponde al universo fuera de nosotros, de manera que se puede calcular matemáticamente las órbitas de los planetas? – No, la matemática tiene que ser algo que está más allá de nosotros como humanos. La matemática nos señala que existen verdades eternas, absolutas, que no cambian con el tiempo ni con las circunstancias. La matemática nos señala que existe una gran mente más allá de nosotros que razona y que ordena el universo, y que fundamentó este universo sobre principios eternos.
Como cristiano que soy, creo que esta gran mente es el Dios de quien habla la Biblia. Así dice en el libro de los Salmos (en un lenguaje más poético que matemático):

“Los cielos cuentan la gloria de Dios, y el firmamento anuncia la obra de sus manos.
Un día emite palabra a otro día, y una noche a otra noche declara sabiduría.”
(Salmo 19:1-2)

“Por tu ordenación subsisten todas las cosas hasta hoy, pues todas ellas te sirven.”
(Salmo 119:91)

Por tanto, la matemática es una cuestión de fe. Para hacer matemática, es necesario creer que existe una realidad más allá de nosotros mismos, y que esta realidad tiene principios absolutos y eternos.

Aun si un matemático no cree en Dios, siempre tiene que “aceptar por fe” ciertas verdades para poder hacer matemática. Estas verdades se llaman axiomas. Si queremos colocar la matemática sobre un fundamento lógico y comprobar todas sus leyes con exactitud, siempre llegaremos a algunos principios fundamentales que no podemos comprobar. Por ejemplo, que los números existen y que se pueden ordenar. O que si dos cosas son iguales a una tercera cosa, estas dos son también iguales entre sí. (O sea, si A=C y B=C, entonces también A=B.) Estos axiomas no se pueden comprobar; pero son necesarios para construir un edificio lógicamente coherente de las matemáticas. En otras palabras: Es necesario aceptarlos por fe.

Por todas estas razones, digo que la matemática es un asunto de fe. Con “fe” entiendo aquí: una convicción firme, que se apoya en verdades más allá de nuestra mente y de nuestro mundo visible.
No estoy diciendo que sea necesario ser judío o cristiano para hacer matemáticas. Hubo grandes matemáticos que no creían en el Dios de la Biblia. Pero por lo menos una “fe matemática” en el sentido que acabo de mencionar, ciertamente será necesaria. Un profesor de matemática necesita despertar en sus alumnos por lo menos esta fe, de que el mundo está regido por principios firmes que son más grandes que nosotros; y que él, el alumno, puede aplicar estos principios e incluso descubrir algunos de ellos por sí mismo. Y al mismo tiempo, un profesor de matemática necesita la humildad de reconocer que él mismo tiene que someterse bajo estos principios; qué él no es “dueño” ni “amo” de la materia que enseña.

Enseñanza burocrática de matemática

No es fácil explicar lo que entiendo con una “matemática por principios”. Quizás se entiende mejor si la comparamos con su contrario, la “matemática burocrática”. Estoy observando que la mayoría de los niños y jóvenes hoy en día están sometidos a una enseñanza burocrática de matemática. Describiré algunos síntomas de ello, y algunos problemas causados por ello.

La enseñanza burocrática enfatiza “el procedimiento correcto”, sin importar el entendimiento.

“Este número va acá, este se suma con este, y el resultado se subraya con rojo.” Y cuando el alumno usa un procedimiento diferente, o subraya el resultado con azul en vez de rojo, su trabajo es rechazado, por más que sea matemáticamente correcto. Igual como en los trámites de la burocracia estatal, donde el ciudadano es diariamente hostigado con exigencias sin sentido: “No, usted no puede entregar su expediente en un fólder así, tiene que comprar uno en nuestra oficina.” Etc, etc. Y nadie puede preguntar ¿por qué?

¿Cuál es el efecto de tal enseñanza en el alumno?
– El alumno es distraído y confundido por asuntos que no tienen nada que ver con matemática. Si por casualidad tiene solamente un lapicero negro en vez de uno rojo, ya no puede realizar su cálculo. En su mente se forma la impresión de que la forma del subrayado (o algún otro detalle insignificante) es más importante que el cálculo en sí.
– El alumno aprende a repetir mecánicamente un procedimiento, sin comprender su significado. Aprende el “cómo”, pero no el “por qué”. Y así, en realidad no aprende nada de matemáticas. Realizar cálculos mecánicamente, es algo que una calculadora puede hacer también; eso todavía no es matemática. La enseñanza burocrática reduce a los alumnos a meras calculadoras. Aprender matemática significaría entender los principios en los que está basada. Pero para eso no hay lugar en una enseñanza burocrática.
– Sin entender los principios, los procedimientos no tienen sentido. Pero un procedimiento sin sentido es más difícil de aprender que uno que se entiende su sentido. Por tanto, el alumno recibe la impresión de que la matemática es difícil, incomprensible; y así se desanima.

He aquí unos ejemplos de la vida real:

– Una alumna está realizando una multiplicación con varias cifras. Al escribir un número, la pregunto: “¿Por qué colocas este número acá?” – La alumna me mira con ojos grandes, confundida. Parece que nunca en su vida alguien le hizo una pregunta así. No sabe qué responder, mira su cuaderno, y por fin empieza a borrar el número que acaba de escribir. – “No necesitas borrarlo, no he dicho que está mal lo que haces. Solamente deseo que me expliques por qué lo haces así.” – Pero la alumna no tiene respuesta. Solamente ha aprendido a obedecer las órdenes mecánicamente; pero no ha aprendido a pensar. Solamente conoce el “cómo”, pero no el “por qué”.

– A otro alumno, un poco más pequeño, le escribí una suma en su cuaderno y le pedí que la resolviera. Su respuesta: “Solamente sé sumar en vertical, pero no en horizontal.” – Para él, el procedimiento era todo. No entendía que el principio de una suma es el mismo, sin importar de qué manera se anota. Si él hubiera aprendido principios, no hubiera tenido este problema.

– Un alumno tenía que simplificar la fracción 300/500: “Primero tomo la mitad, resulta 150/250. Puedo otra vez tomar la mitad, entonces tengo … (aquí demoró un poco más) … 75/125. Y ahora tercios…” – y después de probar unos momentos, se rindió. Le señalé la fracción original y dije: “Mira que ambos números tienen dos ceros al final. ¿No te dice esto que puedes hacerlo de una manera más fácil?” – Después de razonar con él un poco más, él fue capaz de reconocer que ambos números eran múltiplos de 100. Pero aun así, fue incapaz de hallar la solución. La gran pregunta que le inquietaba fue esta: “¿Pero se puede de frente dividir entre 100? Mi profesor me ha enseñado que siempre hay que empezar sacando mitades, después tercios…” – Sin más comentario.

Cuando se enseña una matemática sin principios, los alumnos aprenden “trozos de conocimientos” que están completamente desconectados unos de los otros. Un alumno tenía dificultad de comprender la ley distributiva. Por el otro lado, sabía bien multiplicar números con varias cifras. Pero lo hacía mecánicamente, sin entender por qué (como casi todos los alumnos). Nunca se le ocurrió que podría existir alguna conexión entre las dos cosas. Hicimos algunos ejercicios para que él pudiera comprender cómo se compone la multiplicación de un número con varias cifras:

3 x 3713 =

3 x (3000
+ 700
+ 10
+ 3)

= 3 x 3000
+ 3 x 700
+ 3 x 10
+ 3 x 3

= 9000
+2100
+30
+9

= 11139

Entonces llegó el momento cuando este alumno tuvo una gran revelación: Se dio cuenta de que todo el tiempo, cada vez que multiplicaba, ¡él ya estaba aplicando la ley distributiva sin saberlo!
Pero la mayoría de los alumnos nunca se dan cuenta de esta conexión. En algún momento aprenden la multiplicación larga, como procedimiento mecánico (“este número va en esta casilla y este otro número en esta otra casilla…”), y nadie les dice por qué se hace así. Y en alguna otra lección, en algún momento muy distinto del año escolar, aprenden la ley distributiva, con unos ejercicios tontos que no tienen ningún uso práctico; simplemente porque el currículo dice que ahora hay que aprender la ley distributiva. Y muy pronto la olvidan otra vez, porque no pueden ver ningún sentido en aprenderla. Por fin, esta ley se inventó solamente para aburrir a los alumnos, y nadie nunca la utiliza, ¿verdad?

La enseñanza burocrática enfatiza la sumisión ciega bajo la autoridad, y la conformidad exterior.

Mencioné a una alumna que no podía explicar por qué efectuaba una multiplicación de la manera como lo hacía. Quizás su respuesta más sincera hubiera sido esta: “Lo hago de esta manera porque si lo hago de otra manera, el profesor me va a dar una mala nota o me va a castigar.”

En un sistema burocrático, conformidad es todo. Nadie se atreve a ser diferente, nadie se atreve a admitir que no entiende algo, nadie se atreve a ser original o creativo. Uno de mis hijos, durante algún tiempo, solía resolver sus calculos mentales de una manera bastante “creativa”. Podía suceder, por ejemplo, que multiplicaba 6×14 de la siguiente manera: “6×10 es 60, la mitad de 60 es 30, 60+30=90, le resto 6 y son 84.” Lo interesante fue que sus “soluciones creativas” eran siempre correctas. Pero una enseñanza burocrática desanima esta clase de creatividad. Los alumnos que no se conforman al montón, son castigados con malas notas o con la burla de sus compañeros.

Además, esta presión por la conformidad produce algunas formas de comportamiento disfuncional y enfermizo. Mencionaré una sola: el “adivinar la respuesta”. Los alumnos aprenden pronto que “la apariencia es todo”. Descubren que pueden “ganar puntos” con una buena respuesta – no importa si ellos mismos entienden la respuesta que dieron o no. Y descubren que muchas veces se puede adivinar la respuesta. El profesor pregunta: “¿Cómo se resuelve este problema?” – Por lo general hay solamente cuatro respuestas posibles: “Hay que sumar”, “Hay que restar”, “Hay que multiplicar”, “Hay que dividir”. (En los grados avanzados las posibilidades se reducen a una sola: “Hay que hacer una ecuación.”) Entonces, si digo al azar cualquiera de éstas, tengo una probabilidad bastante buena de acertar (y si fallo, por lo menos he dado la impresión de haber pensado algo).
Una vez me encontré con un alumno de primer grado que tenía en la mano una lámina con el dibujo de un dedo con su uña, y debajo en letras grandes la palabra “uña“. Le pregunté: “¿Ya sabes leer?” – “Sí, claro.” – “A ver, ¿qué dice aquí?” – Enseguida respondió el chiquillo: “Dedo.” – Pero no lo dijo así no más; hizo un “show” perfecto: Pasó con su dedo por debajo de las letras y dijo pausadamente, como deletreando: “De- do.” A su corta edad ya había aprendido la lección más importante para un alumno de la burocracia: como impresionar a su profesor con apariencias.

Desgraciadamente, esta actitud no ayuda para nada a aprender matemática. Al contrario, puede obstaculizar el aprendizaje por toda la vida. Primeramente, los alumnos adquieren una noción completamente equivocada de lo que es la matemática. No entienden lo más fundamental: que hacer matemática es aplicar principios. En lugar de ello, empiezan a pensar que la matemática es realmente algo como un juego al azar, y que el “adivinar” es el método correcto. Así como se hizo costumbre entre algunos alumnos, rezar en el camino a su examen: “Santa María, dame puntería” …

Y estos “adivinadores” pueden pasar sus exámenes asombrosamente bien. No solo por copiar de sus compañeros. También porque hoy en día, casi todos los ejercicios y exámenes son de selección múltiple. Claro, esto facilita la tarea del profesor de revisar las respuestas (hasta una computadora puede hacerlo). Pero invita a “adivinar”. A ver, ¿qué tal esta tarea?

356 x 22 = ? A) 1 B) 2 C) 3 D) 7832

Yo sé, estoy siendo un poco sarcástico. Pero en serio, no se puede exagerar el efecto entontecedor de los ejercicios de selección múltiple. Los alumnos ya se están acostumbrando, en vez de razonar lógicamente, a buscar simplemente “la alternativa correcta”. Esta es una muy mala preparación para la vida, porque los problemas de la vida real nunca son de selección múltiple. Y especialmente en la matemática: el conjunto de las alternativas posibles para la solución de un problema matemático, ¡es normalmente infinito! Aun para un problemita como este: “Pedro vive más arriba que Pablo, Juan vive más arriba que Pedro, ¿quién vive en el sótano?” – Respuesta: los ratones. – (Solamente estoy intentado aligerar un poco este tema pesado.)

Pero el hecho es: Limitar las posibles respuestas a cuatro o cinco alternativas, significa truncar el razonamiento del alumno. Los grandes científicos del pasado destacaron exactamente por sobrepasar los límites de las alternativas que ofrecían sus contemporáneos. Un ejemplo histórico:

Cuando los astrónomos empezaron a adoptar el sistema heliocéntrico, empezando con Copérnico, intentaron calcular las órbitas de los planetas alrededor del sol. Primero, la idea general era que estas órbitas tenían que ser círculos. (Esta idea se derivaba todavía de los antiguos griegos, que se imaginaban el cielo compuesto de diversas esferas perfectas.) Pero al avanzar las observaciones de los planetas, nunca coincidieron exactamente con las órbitas circulares calculadas por los astrónomos. Entonces pensaron que quizás los planetas describían otros círculos pequeños superpuestos a su órbita circular grande. Por muchos años, los astrónomos intentaban encontrar una combinación de círculos que se ajustaba a sus observaciones, pero siempre quedaba un error que no podían superar. Su problema era que habían limitado las alternativas de las respuestas posibles:

La órbita del planeta es:
A) un círculo
B) un círculo con otro círculo superpuesto
C) un círculo con dos círculos superpuestos
D) otra combinación de círculos.

Solo muchas décadas más tarde encontró Juan Kepler la solución que se hizo famosa: las órbitas de los planetas no son ninguna combinación de círculos, sino elipses. Para encontrar esta solución, Kepler tuvo que romper las limitaciones que los astrónomos anteriores habían impuesto a las respuestas posibles.

– Todos estos asuntos del “adivinar las respuestas” y del “conformarse exteriormente”, son en realidad asuntos de carácter, ética y moral. La persona que aparenta entender lo que no entiende, no es honesta. Y esto no ayuda en nada para el aprendizaje de la matemática.

En un sistema burocrático, siempre hay alguna manera de “engañar el sistema” y de salirse con la suya. Uno puede sobornar al policía o al funcionario; uno puede sobrepasar las leyes mientras nadie mira; uno puede incluso convertirse en autoridad uno mismo y cambiar las leyes según su antojo. Pero en la matemática no funciona nada de esto. La matemática no se deja sobornar; las leyes de la matemática se cumplen con exactitud aun cuando nadie mira; y nadie tiene la autoridad de cambiar las leyes de la matemática. Las técnicas que la gente aprende para sobrevivir en una burocracia, no sirven para nada en el campo de las matemáticas. Esta es una razón más por qué los estudiantes educados en un sistema burocrático, raras veces llegan a entender la matemática. No pueden entender el “espíritu” de la matemática en un tal sistema.

Y personalmente digo, si tengo que escoger entre los dos, la burocracia o la matemática, yo escojo la matemática. Aunque en el mundo actual, la burocracia es la “realidad” con la que vivimos – esta palabra “realidad” ha sido terriblemente maltratada. La gente está usando esta palabra “realidad” cuando busca una excusa para sus manejos deshonestos: “Es que así es nuestra ‘realidad’.” Pero la palabra “realidad” se deriva de “rey”: “real” es lo que el rey dice y hace. Como cristiano, mi Rey es Dios. ¿Qué dice Dios acerca de la “realidad”?
“Sabemos que somos de Dios, y el mundo entero está bajo el maligno. Pero sabemos que el Hijo de Dios ha venido, y nos ha dado entendimiento para conocer al que es verdadero; y estamos en el verdadero, en su Hijo Jesucristo. Este es el verdadero Dios, y la vida eterna.” (1 Juan 5:19-20)
“Para esto apareció el Hijo de Dios, para deshacer las obras del diablo.” (1 Juan 3:8).

La “realidad” de Dios es Su gobierno eterno, y Sus principios que no pueden ser quebrantados por nada y nadie. Una parte de esta realidad son las leyes de la matemática. Por eso, los planetas se mueven según leyes matemáticas y no según leyes burocráticas. Y por tanto, la matemática corresponde a la verdadera Realidad del universo, pero la burocracia no.

(Continuará)

Anuncios

5 responses to “Aprender matemática: ¿Cuestión de burocracia o de principios? (Parte 1)

  1. […] un artículo anterior (“Enseñanza de matemática: ¿Cuestión de burocracia o de principios?”) he contrastado la enseñanza escolar usual de la matemática (o sea, la enseñanza burocrática) […]

  2. Muy buena la reflexión y la aplicación a nuestra vida. Nunca había visto la matemática de esta manera, a pesar de comprender que los axiomas se aceptan y no se cuestionan. Dios le guarde.

  3. […] A veces hago preguntas como estas (o planteo tareas y desafíos relacionados) a los alumnos que vienen a nuestro refuerzo escolar. Entonces, casi siempre observo una gran discrepancia entre las (buenas) notas en los exámenes, y los conocimientos y capacidades efectivos de los alumnos. Particularmente en la matemática (es en esta área donde los alumnos manifiestan más necesidad de refuerzo): Cuando los alumnos conocen de antemano el tema de un examen, y es un tema claramente delimitado, entonces les es bastante fácil descubrir las soluciones correctas mediante procedimientos “mecánicos” y fórmulas memorizadas. (Aun más si el examen consiste en escoger entre respuestas múltiples ya formuladas – entonces unos alumnos pueden aprobar simplemente adivinando.) Pero aun los alumnos “buenos” raramente pueden explicar por qué funciona su procedimiento, qué significa la fórmula, o cómo se puede demostrar que la fórmula es correcta. Tampoco comprenden las relaciones entre su tema actual y los otros temas que trataron anteriormente. Por eso lo vuelven a olvidar todo después del examen. Esto no es “aprendizaje”, es solamente “entrenamiento para el examen”. (Vea también: “Aprender matemática: ¿una cuestión de burocracia o de principios?”) […]

  4. […] les transmite una noción muy equivocada de lo que “es” la matemática. Aparte de ser burocrático, el método escolar desconecta la matemática de la vida diaria, y así la hace incomprensible e […]

  5. […] Al usar situaciones de la vida diaria para enseñar matemática, se deben señalar también los principios en los que se basan las operaciones matemáticas: ¿Qué significa sumar? (Básicamente significa […]

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: