Educación Cristiana Alternativa

Educación es algo muy diferente de lo que usted piensa …

Matemática en la vida diaria: Juegos que ayudan a desarrollar el pensamiento matemático

en 31-10-2013

En el artículo anterior hemos visto que muchos juegos de mesa son una forma de practicar la matemática pura. No es necesario que contengan números para que sea matemática. Un movimiento de ajedrez puede describirse como operación matemática, igual como una suma o una división. Existen matemáticos profesionales que pasan mucho tiempo analizando juegos.

Entre los juegos de tablero más conocidos figuran el ajedrez, el juego de damas, y las damas chinas. A casi todos los niños les gusta jugar estos juegos, y así entrenan su pensamiento lógico y estratégico. No lo considero necesario describir estos juegos aquí, porque se pueden conseguir fácilmente en cualquier tienda de juegos, y sus reglas se pueden averiguar en internet.
A continuación mencionaré algunos otros juegos idóneos para entrenar el pensamiento matemático:

Michi

Este juego muy conocido se juega entre dos jugadores, en un cuadrado de 3 por 3 cuadraditos dibujado en papel. Por turnos, cada jugador marca uno de los cuadraditos con su símbolo respectivo ( O resp. X ). Gana el primero en tener tres de sus símbolos en una línea recta (horizontal, vertical o diagonal).
Los niños más pequeños simplemente jugarán pensando en su turno actual. Niños más grandes podrán anticipar mentalmente una o más jugadas y así desarrollar una “estrategia ganadora” más eficaz.

Variación: “Michi cilíndrico”: Los jugadores se imaginan que el cuadrado fuera enrollado en forma de un cilindro, de manera que saliéndose por el borde derecho uno vuelve a entrar al cuadrado desde la izquierda. Esto significa que las siguientes configuraciones también constituyen “líneas rectas” y por tanto gana el jugador que alcanza una de ellas:

michi-cilindrico

Variación: “Michi al revés”: El que tenga tres de sus símbolos en una línea recta, pierde.

Marcar casitas

Se juega entre dos jugadores en papel cuadriculado. Primero se marca una “cancha de juego”, por ejemplo un rectángulo. La meta del juego es “conquistar” dentro de la cancha la mayor cantidad posible de cuadraditos, encerrándolos con rayas por sus cuatro lados. Los jugadores trazan por turno cada uno un lado de uno de los cuadraditos dentro de la cancha. Si un jugador logra encerrar un cuadradito completamente (trazando su último lado), puede marcarlo con su símbolo (O resp. X) y trazar una raya adicional. Si con esta raya adicional él completa otro cuadradito, puede marcarlo también y seguir jugando, etc. hasta que ya no puede completar ningún cuadrado. Los bordes de la cancha valen como rayas ya trazadas. Se juega hasta que todos los cuadrados de la cancha son marcados. Entonces es ganador el que marcó el mayor número de cuadrados.

Un ejemplo de una jugada:

marcarCasitas1

Comenzando con la situación a la izquierda, el jugador del turno pudo sucesivamente marcar los dos cuadraditos mostrados, y después trazó una línea más (última imagen). Su adversario podrá entonces marcar para sí el cuadradito abajo en el medio. (Normalmente, la cancha se hará más grande que esta.)
– Aunque se dé la situación de que un jugador puede con una sola línea marcar dos cuadraditos a la vez, puede después trazar una sola línea adicional, no dos.

Nim

Se juega entre dos jugadores con objetos pequeños como palitos de fósforos o piedritas. Los palitos se colocan en tres, cuatro o más filas. No hay regla acerca del arreglo inicial, los jugadores están libres para comenzar con cualquier arreglo que deseen. Por ejemplo, se puede comenzar con una fila de 3, una fila de 4 y una fila de 5 palitos. Otra posición inicial común es con cuatro filas que contienen 1, 3, 5 y 7 palitos respectivamente.
Entonces, por turnos, cada jugador quita unos palitos de una fila. Puede quitar tantos palitos como desea, con tal que todos se encuentren en la misma fila. El que puede quitar el último palito, gana.

Este es un juego muy antiguo, y uno de los primeros que fue analizado a fondo por matemáticos profesionales. Se encontró que existe una estrategia generalizada que permite ganar siempre al jugador afortunado que la puede aplicar primero. Pero no la explicaré aquí, para que el juego siga siendo interesante …

Solitario

Este juego se juega a solas. También es conocido con el nombre “senku”. El tablero tiene 33 agujeros en la siguiente forma:

solitaire267

En cada agujero se coloca un palito de fósforo, excepto en el agujero del medio que queda vacío.

Una jugada válida consiste en saltar con un palito sobre un palito vecino y colocarlo inmediatamente detrás del palito vecino en un agujero vacío, y enseguida se quita el palito vecino:

solitaire-salto267

O sea, un palito puede saltar solamente si a su lado se encuentra otro palito (el cual será quitado), y si detrás de ese otro palito hay un agujero vacío. Se puede saltar solamente en dirección horizontal o vertical, pero no diagonal. Ningún otro tipo de jugadas es permitido. Cuando ya no se puede hacer ninguna jugada válida, el juego termina. La meta consiste en saltar y quitar palitos tantas veces como sea posible, o sea hasta que quede un número mínimo de palitos. La solución perfecta (que es difícil de lograr) consiste en dejar un solo palito.

Variaciones: Se puede comenzar con posiciones iniciales distintas, usando menos que 32 palitos. Es una tarea de investigación interesante (pero exigente), descubrir con cuáles posiciones iniciales es posible que al final del juego sobre un solo palito. – Existe también una variación donde el tablero tiene una estructura hexagonal, de manera que se puede saltar en 6 direcciones.

Golf matemático

Este es un juego puramente matemático que se puede jugar sin ningún material, y existen muchas variaciones del mismo. Básicamente se trata de llegar desde un número inicial (normalmente el cero) exactamente hasta un número determinado, aplicando solamente ciertas operaciones prescritas.

La variación más sencilla para niños permite solamente sumar al número actual uno de dos números prescritos; y se puede jugar con regletas Cuisenaire y una cinta métrica pegada en la mesa (o una recta numérica dibujada en una tira larga de papel, con unidades de 1 cm). Por ejemplo, se permite solamente sumar 3 ó 5. Entonces, se juega únicamente con las regletas de las longitudes 3 y 5. Si el “número destino” es 19, entonces gana el jugador que primero alcanza exactamente 19, según las siguientes reglas:

– Jugando por turnos, cada jugador construye por su lado de la cinta métrica una fila ininterrumpida de regletas, comenzando desde el cero.

– Se pueden usar solamente regletas de las longitudes permitidas (3 ó 5, en nuestro ejemplo).

– En cada turno, se puede:
a) aumentar una regleta al final de la fila; o
b) remplazar una regleta de la fila por una regleta de la “otra” longitud (o sea, corregir un error cometido).

– No es permitido colocar una regleta solamente para “probar”. Si un jugador coloca una regleta y entonces no está conforme con su jugada, tiene que esperar el siguiente turno para corregirla.

– Si un jugador sobrepasa el destino (por ejemplo, llega con su fila al 20 en vez del 19), pierde.

– Si el jugador que comenzó el juego llega al destino, y el otro jugador puede enseguida también llegar al destino, ambos ganan.

GolfMatematico

Jugando así, se puede dar el problema de que el segundo jugador “copia” las jugadas del primer jugador, en vez de pensar por sí mismo. Esto se podría evitar haciendo que ambos jueguen simultáneamente (por ejemplo contando “uno, dos, tres” para cada turno), sin poder ver cuál regleta está escogiendo el otro jugador.
– Otra forma de evitar el problema consiste en no dar las mismas regletas a los dos jugadores; pero en este caso tendríamos que asegurar que ambos jugadores puedan llegar al destino con el mismo número de turnos. Por ejemplo, con las regletas de 3 y 5, el número 19 se puede alcanzar con un mínimo de 5 turnos, porque 5+5+3+3+3=19. Usando regletas de 3 y 4, también se puede llegar en 5 turnos, porque 4+4+4+4+3=19. Por tanto, con el 19 como destino, se podría dar a un jugador regletas de 3 y 5, y al otro jugador regletas de 3 y 4; entonces ambos tienen las mismas oportunidades, pero no pueden “copiar” el uno del otro. Esto requiere unos cálculos por parte de un adulto que define con anticipación el “número destino” y las regletas permitidas.

Este juego puede dar lugar a unas investigaciones interesantes. Por ejemplo, ¿se puede calcular de antemano la “solución más corta”? ¿Cómo se puede hacer eso? – ¿Qué pasa si jugamos con regletas de 4 y de 6, y queremos alcanzar el número 21? ¿Por qué sucede eso? – ¿Es posible alcanzar todos los destinos con palitos de 3 y 4? ¿con palitos de 4 y 5? ¿con palitos de 3 y 7? Etc…

Más difícil se vuelve el juego cuando se permiten tres (o más) números diferentes para sumar, pero que son relativamente grandes en comparación con el número destino. Por ejemplo, ¿cómo se puede alcanzar 38 en un mínimo de jugadas con regletas de 7, 9 y 10? ¿o cómo se puede llegar a 100 con los sumandos 13, 19 y 23? – ¿Cuáles son los destinos que no se pueden alcanzar con 7, 9 y 10? – Investigaciones como estas son un entrenamiento excelente en pensamiento matemático; pero la mayoría de los niños tendrán que alcanzar los doce años o más, antes que puedan emprender tales investigaciones con éxito y de manera sistemática.

Lobo y ovejas

Este es un juego para principiantes (niños pequeños) que se puede jugar antes de enseñarles el juego de damas. Como el juego de damas, se juega en un tablero de ajedrez, usando solamente los cuadrados negros. Las fichas avanzan diagonalmente, un paso a la vez. Un jugador es el lobo (una ficha negra en un borde del tablero), el otro jugador tiene cuatro ovejas (cuatro fichas blancas que se colocan en los cuadrados negros del borde opuesto del tablero). Las ovejas pueden solamente ir hacia adelante (diagonalmente); el lobo puede ir hacia adelante y hacia atrás.

lobo-ovejas240

No se puede saltar ni “matar” fichas. El lobo gana si logra llegar al borde opuesto del tablero (donde comenzaron las ovejas). Las ovejas ganan si logran encerrar al lobo, de manera que ya no puede moverse.

Molino

Se juega entre dos jugadores con fichas de damas en un tablero como en el dibujo:

Molino1-420

Un jugador tiene 9 fichas blancas, el otro 9 fichas negras. El juego tiene dos fases: la de colocar fichas, y la de mover fichas.

Primera fase:
Por turnos, cada jugador coloca una de sus fichas en uno de los puntos de intersección (o esquina) del tablero. Cada vez que un jugador logra colocar tres de sus fichas en una misma línea recta del tablero, puede quitar del tablero una ficha del oponente. Las fichas quitadas ya no juegan.

Las tres fichas en una línea se llaman “molino”. Una ficha que pertenece a un molino no puede ser quitada, excepto si todas las fichas del jugador pertenecen a molinos. – Aun si un jugador lograse en un solo turno crear dos molinos simultáneamente, puede quitar una sola ficha del oponente. (Estas reglas valen también para la segunda fase.)

Molino2-420

Segunda fase:
Cuando todas las fichas están colocadas, los jugadores (por turnos) mueven una de sus fichas por un paso; o sea, siguiendo una de las líneas negras hasta el siguiente punto (intersección o esquina). Si con este movimiento el jugador logra formar un molino, puede nuevamente quitar una ficha a su oponente.

Un jugador puede, en movimientos sucesivos, “abrir” y “cerrar” un mismo molino varias veces y quitar una ficha al oponente, cada vez que cierra el molino. Jugadores experimentados logran construir molinos combinados de tal manera que al abrir uno de ellos, con el mismo movimiento cierran otro.

MolinoCombinado-420

Arriba: Negro puede cerrar un molino si este es su turno. Blanco tiene molinos combinados.

Si un jugador tiene solamente tres fichas en el tablero, puede saltar con una de ellas a cualquier punto libre.

Ganador es el que quita todas las fichas de su oponente; o el que logra encerrar a su oponente de manera que ya no puede hacer ningún movimiento.

Variación: El mismo juego se puede jugar con 12 fichas por jugador. En este caso, al tablero se le añaden cuatro líneas diagonales:

Molino1diag-420

Unas variaciones del ajedrez

“Ajedrez con desventaja”: Si un jugador es mucho más experimentado que el otro (por ejemplo cuando un adulto juega con un niño que recién está empezando a aprender), el jugador más experimentado puede comenzar con una o dos figuras menos. Por ejemplo puede jugar sin reina, o con una sola torre y un solo alfil.

“Ajedrez cilíndrico”: Los jugadores se imaginan que el tablero es “enrollado” en forma cilíndrica, de manera que si una figura sale del tablero por el borde izquierdo, vuelve a entrar por el borde derecho, y viceversa. Así por ejemplo, un peón blanco en h4 y un peón negro en a5 podrían matarse mutuamente.

“Ajedrez al revés”: Quien tiene la posibilidad de comer una figura enemiga, tiene que comerla. Ganador es quien se queda primero sin figuras. (En esta variación, el rey se trata como cualquier pieza común: el juego continúa aunque el rey esté muerto.)

 


Familias educadoras y escuelas alternativas interesadas en un aprendizaje lúdico de la matemática, revisen los libros de la serie “Matemática activa” .

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: